THIS REPORT HAS BEEN DELIMITED AND CLEARED FOR PUBLIC RELEASE UNDER DOD DIRECTIVE 5200.20 AND NO RESTRICTIONS ARE IMPOSED UPON ITS USE AND DISCLOSURE. DISTRIBUTION STATEMENT A APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. # Armed Services Technical Information Agency Because of our limited supply, you are requested to return this copy WHEN IT HAS SERVED MOUR PURPOSE so that it may be made available to other requesters. Your cooperation will be appreciated. NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED GOVERNMENT PROCUREMENT OPERATION, THE U.S. GOVERNMENT THEREBY INCURS NO LESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING, THE HOLDER OR ANY OTHER PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO. Reproduced by DOCUMENT SERVICE CENTER KNOTT BUILDING, DAYTON, 2, 0 HIO UNCLASSIFIED ## NAVAL AIR MATERIAL CENTER NAVAL BASE Philadelphia, Pa. ## AERONAUTICAL STRUCTURES LABORATORY REPORT ON AIRSHIP STATIC HEAVINESS INDICATOR ### ISSUED BY ## NAVAL AIR EXPERIMENTAL STATION #### NAVAL AIR MATERIAL CENTER Naval Air Experimental Station Philadelphia 12, Pennsylvania In reply refer to: XT-31-DFP:bg VZPK/F1 (925) 20 AUG 1954 From: Director, Naval Air Experimental Station To: Chief, Bureau of Aeron utics (AD-221) Subj: Report No. ASL NAM AD-250.11, Part II, "Airship Static Heaviness Indicator" Ref: (a) BUADR ltr Aer-DE-221 ZPK 3101 of 8 Jan 1952 Encl: (1) Sixteen copies of subject report - 1. Enclosure (1) is forwarded for the Bureau of Aeronautics' information and files in completion of the work authorized by reference (a). - 2. The equipment for obtaining a direct reading of airship static heaviness has been forwarded to the Chief of Mavel Airship Training and Experimentation, Lakehurst, New Jersey, for evaluation and use in accordance with reference (a). - 3. With the issuance of this report, the project is considered closed. Wm.C. DUNN By direction #### NAVY DEPARTMENT BUREAU OF AERONAUTICS #### REPORT ON #### AIRSHIP STATIC HEAVINESS INDICATOR RY # AERONAUTICAL STRUCTURES IA EORATORY NAVAL AIR EXPERIMENTAL STATION NAVAL AIR MATERIAL CENTER PHILADELPHIA | thorization BUAER ltr Aer-DE-221 XPK 3101 of 8 Jan 1952 | | |---|-----| | ites of Development, Fabrication, and Test From 1 Nov 1953 To 20 May 19 | 954 | | eported by D. H. Parry Electronic Scientist | | | eported by D. H. Parry / Test Engineer | | | Electronic Scientist | | | for projection. | | | eviewed by J. Jacobson Section Supervisor | | | Supv Electropic Scientist | | | DEWeiss | | | oproved by D. E. Weiss Division Head | | | Supv Electronic Scient ist | | | pproved by J. S. Kean Head Engineer | | | pproved by J. S. Mean Head Engineer | | | Sypy Mero Development Engr | | | oproved by | | | oproved by | | | Commander, USN Aero Struc Lab | | | | | DATE ISSUED 10 Aug 1954 #### CONTENTS | | | | | | | | | | PAGE | |-----------------|------------|------|-----|-----|-------|-------|-----------|-------|-------| | ABSTRACT | |
 | | • | | | | • • | • | | AUTHORIZATION . | |
 | | | • • r | |
 | | . 4 | | OBJECT | • |
 | | | | | | | . 4 | | INTRODUCTION | |
 | | • • | | • • • |
 | | . 4 | | DESCRIPTION | <i>z</i> • |
 | • . | | | • • |
 | | . 4-5 | | метнор | |
 | | | • • | |
 | • • | •, 6 | | RESULTS | |
 | | | | • • • |
 | • • • | . 6 | | conclusions | •. • |
 | | | | • |
• • • | | . 7 | | RECOMMENDATIONS | |
 | •* | | | • • |
• • | | . 7 | | PLATES 1 TO 5 . | |
 | | | | |
• • • | | • | - (a) NAS, Lakehurst, ltr Fl NA4-70-JCK:cp of 6 Sep 1951 (b) NAXSTA ltr XT-31-DHP:bg J15-5 (997) of 13 Oct 1953 - (c) BUAER 1tr Aer-AC-71 163479 of 22 Dec 1953 ### PLATES | | NUMBER | |---|--------| | NAXSTA Photo NA46(1)-282918(L)-5-54 - Completed Strain Gage
Installation on Trunnion of Landing Gear | 1 | | NAXSTA Photo NA46(1)-282390(L)-5-54 - Static Heaviness Indicator | 2 | | Purtion of Type K SR-4 Indicator Modified for Conversion to Static Heaviness Indicator | 3 | | Calibration of Static Heaviness Indicator on ZP2K-68 Airship at Lakehurst, New Jersey | 4 | | Wiring Disgram of Baldwin-Southwark Type K SR-4 Strain Indicator. | 5 | #### ABSTRACT A prototype airship static heaviness indicator has been developed. Resistance wire strain gages affixed to the trunnion of the type 9060A landing gear measure the vertical shear loads due to static heaviness. The strain gage bridge output is read directly in terms of pounds of static heaviness on a null-balancing type of indicator. The design and operating characteristics of the equipment are described. The equipment has been forwarded to the Chief of Naval Airship Training and Experimentation, Lakehurst, New Jersey, for evaluation and service use. #### <u>AUTHORIZATION</u> The development of an airship static heaviness indicator was authorized by BUAER ltr Aer-DE-221 ZPK 3101 of 8 Jan 1952. The design, fabrication, installation, and test of the equipment herein described were conducted from 1 November 1953 to 20 May 1954. #### 2. OBJECT To develop a means of providing a direct visual reading of the static heaviness of an airship. #### 3. <u>INTRODUCTION</u> The present method for obtaining the static heaviness of an airahip is time-consuming and laborious. It is based on the removal or addition of weights manually to determine the equilibrium condition of the airship. The useful load of personnel, equipment, food, and fuel is then put on board and an estimate of the static heaviness is made which may be as much as ten percent inaccurate. A system for remote indication of the static heaviness of an airship which could instantaneously give more accurate readings in pounds would make possible considerable savings in time and man-power. A resistance wire strain gage bridge, permanently installed to measure vertical shear loads in the trunnion of the type 9060A landing gear manufactured by Cleveland Pneumatic Tool Company, is highly responsive to the static heaviness of the airship. Its output can be indicated at a remote location, providing a straightforward method of obtaining a direct reading of static heaviness. #### 4. DESCRIPTION The system for providing a visual reading of static heaviness consists of a load-sensitive strain gage bridge on the trunnion of the type 9060A landing gear and a Baldwin Southwark type K SR-4 strain indicator modified to give direct readings of static heaviness from zero to 4,000 pounds. The strain gage bridge measures vertical shear load and consists of eight SR-4, type AD-7 resistance wire strain gages in a four-active-arm bridge. The completed and waterproofed installation of the gages on the trunnion is pictured in plate 1. The modified indicator contains balancing and calibrating units in addition to a self-contained, battery-operated power supply. The indicator employs a null-balancing circuit in which motion of a calibrated slide wire varies a bucking voltage to the output of the strain gage bridge. The difference between bridge and bucking voltages is amplified and indicated on an output meter which provides a very sensitive balance indication, independent of battery voltages and tube characteristics. Readings are taken when the output #### DESCRIPTION (Continued) meter indicates zero. Plate 2 is the front view of the static heaviness indicator. Plate 3 shows the modifications in the indicator circuit which provide for direct readings of static heaviness. A drawing of the Baldwin Scuthwark type K SR-4 strain indicator is reproduced in plate 5. A four-conductor shielded cable to connect the strain gage bridge to the indicator is drawn up from the landing gear into the car of the airship. Before using the equipment, the condition of the batteries should be checked by setting the switch first on "A" and then on "B" and noting on the meter dial whether in each case the pointer is beyond the red range. If not, the batteries should be replaced by removing the cover from the bottom of the indicator case. Turn the power switch to "ON" and allow ten seconds for the warm-up of the tubes. At this point the zero setting should be checked. Turn the "STATIC HEAVINESS - POUNDS" indicator knob to read zero. With no load on the landing strut, i.e., the airship floating with the landing gear off the ground, note the reading on the upper meter. If it is not zero, loosen the "BALANCING" potentiometer lock-nut to permit the shaft to be turned by a screw driver. Rotate the shaft to give a zero reading on the meter and then lock the potentiometer in this position. The airship may now be loaded for take-off. As this is being done, the null-balancing pointer may be kept near zero by rotating the slide wire knob. When the airship is fully loaded, the null-balancing pointer is set exactly at zero by means of the knob. The static heaviness can then be read directly from the lower indicator. The zero setting of the equipment should be checked prior to at least each of the first twenty take-offs. If no shift is perceptable, the zero determination need not be repeated as frequently. However, it should be checked after any unusually hard landing or other event which could disturb the bridge balance. Perhaps the most convenient time to do this is in flight when there is no vertical load on the landing gear. The equipment should be re-calibrated about every two weeks. Using known weights or a scale under the landing gear, the indicator may be whecked at a number of points up to 4,000 pounds heaviness. First check the zero setting, then load the airship and set the indicator to the applied weight. If the null-balancing meter pointer is not at zero, loosen the "CALIBRATING" potentiometer lock-nut and adjust until pointer is at zero. The shaft is then locked into position. #### 5. <u>METHOD</u> #### a. Preliminary Calibrations In the course of the development, it was found necessary to instrument two landing gears of the type 900A. The first was instrumented while installed on the ZPZK-68 airship at the Naval Air Station, Lakehurst, New Jersey. A simple four-strain-gage, four-active-arm bending bridge was affixed to the trumion. When unsatisfactory calibrations were obtained with this instrumentation, a more complex eight-gage, four-active-arm shear bridge was designed to reduce the large errors previously obtained. This strain gage bridge was installed on the second landing gear at the Naval Air Experimental Station. A loading jig and a loadometer, whose error was less than .5 percent of the full scale of 4,000-pounds static heaviness, were used to calibrate the landing gear. The weight indications were read on the modified SR-4 indicator. Calibrations of a four-gage bridge similar to the original bending bridge were obtained in addition to the calibration of the eight-gage bridge. The calibrations were compared. #### b: Field Calibration After the calibrations on the loading jig, the landing gear was installed on the ZP2K-68 airship for the field evaluation tests. The tests were conducted in the hangar. The loadometer which had been used in the laboratory calibrations was placed under the landing wheel of the airship to give indications of static heaviness. A calibration was run. On the succeeding day the zero shift was checked and another calibration was made. #### 6. RESULTS #### a. Preliminary Calibrations The unsatisfactory calibrations at the Naval Air Station, Lakehurst, New Jersey, using the simple four-gage bending bridge were due to a shifting of the point of load application on the landing strut trunnion. The errors were large and unpredictable, and tapping of the landing gear mounts produced significant changes in the reading. In the laboratory calibrations, where the shifting point of load application was roughly simulated, the results using the eight-gage shear bridge were greatly improved over those obtained with the four-gage bridge. The errors were reduced to within repercent of full scale of 4,000 pounds, and tapping caused almost no change in the readings. #### b. Field Calibrations The calibration curve is given in plate 4. Differences between static heaviness indication and loadometer readings did not exceed 100 pounds or 2.5 percent of full scale. There was no perceptible zero shift at the start of the second day's calibration. #### <u>conclusions</u> 7. - a. The static heaviness indicator provides a direct visual reading of the static heaviness of an airship. - b. It is estimated that errors should not exceed 2-1/2 percent of full scale under the still air conditions prevailing in a hangar. #### 8. RECOMMENDATIONS It is recommended that the equipment be evaluated for service use by the Chief of Naval Airship Training and Experimentation, Lakehurst, New Jersey, including tests under various wind conditions while the airship is masted outdoors. COMPLETED STRAIN INSTALLATION ON TRUMMICS OF LANDING GEAR PHOTO: NA46(1)-282918(L)-5-54 PLATE 1 STATIC HEAVINESS INDICATOR PHOTO: NAL6(1)-282390(L)-5-54 Unchanged R3 = 260 A. R6 = 18,250 A R1, R2, R10, R11 = 1.45 A R7, R8, R9, R12 = 10 A R7 = 260 A R8 = 260 A R8 = 1500 A R13 = 70,000 A R13 = 70,000 A R5 = 5000 A calibrating R14 = 5,000 A balancpot. ing pot. # Armed Services Technical Information Agency Because of our limited supply, you are requested to return this copy WHEN IT HAS SERVED TOUR PURPOSE so that it may be made available to other requesters. Your cooperation will be appreciated. NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED GOVERNMENT PROCUREMENT OPERATION, THE U.S. GOVERNMENT THEREBY INCURS NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING, THE HOLDER OR ANY OTHER PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO. Reproduced by DOCUMENT SERVICE CENTER KNOTT BUILDING, DAYTON, 2, 0HIO UNCLASSIFIED